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Introduction

Space photovoltaic cell technology has seen substantial improvements to cell effi-

ciency, size, and weight and cost reduction since the first cells were flown in the early

'60s.

Improvements to material and process technology together with a better under-

standing of device physics has resulted in planar space silicon solar cell efficiencies of

up to approximately 15% AM0 in sizes up to 8 cm x 8 cm. Although terrestrial solar

cell designs have shown substantially higher conversion efficiencies at beginning of

life (BOL) [ref. 1,2] the susceptibility of these designs to radiation damage has made

them unsuitable for space use at this time. It is generally accepted therefore that cur-

rent silicon efficiencies of 15% represent the plateau in space silicon cell technology

until more advanced qualified designs evolve.

In contrast, GaAs and related III-V material based solar cells are in their infancy

of development and offer substantial increases in efficiency and radiation hardness

compared to silicon. Single junction GaAs cell efficiencies of 18.5% have already been

demonstrated in production [ref. 3] and efficieneies up to 32% have been reported on

prototype two junction cells [refs. 4-6].

A significant impediment to the widespread use of GaAs cells is the cost and

fragility of the wafer. Although 5 rail GaAs cells up to 2 cmx 4 cm have been

demonstrated [ref. 3], the manufacture of larger area, thinner GaAs/GaAs cells is

virtually impossible given their poor mechanical strength. Both Si and Ge have been

considered as alternative substrates on which to grow GaAs layers. The problems

associated with the GaAs/Si system, while not unsolvable, are formidable, and large

area solar cells based on this system are somewhat distant in the fi2ture. Ge on

the other hand is well suited for GaAs epitaxy both in terms of thermal expansion

coefficient and lattice match and Spectrolab has been actively developing this cell
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for severalyears. Furthermore,with appropriately focusseddevelopmenton 4 inch
diameter Ge wafergrowth and high volumeMOCVD reactor systemsit will become
possibleto manufacture cells up to 8 cm x 8 cm in sizewith thicknessesdown to 3
mils thus providing the aerospaceindustry with a "plug in" high power replacement
technologyfor many silicon solar arrays.

Cell Construction

The cross-section of the GaAs cell is shown in Figure 1. It consists of an N +

GaAs buffer (2.0 microns),N-GaAs base (3.0 microns), P-GaAs emitter (0.4-0.5 mi-

crons) and a P-A10.sTGa0.13As window (0.05-0.1 microns). An P+ GaAs cap separates

the front contact from the window allowing very low contact resistance to be achieved

while at the same time preventing the diffusion of metal into the sensitive junction

region during interconnect attachment. Contact to the cap is made using a stable

Ti/Pd/Ag metallization, proven to be stable at 300°C for 500 hours. Further addi-

tion of diffusion barriers to the metallization system also shows promise of increasing

thermal stability to 550°C or more. The thin window also allows high efficiency, both

by minimizing the absorption of short wavelengths and by improving the optical per-

formance of the antireflection (AR) coating. This is important at short wavelengths

where optical interference effects in the window are high.

Modeling of GaAs/Ge Cell Performance

Spectrolab has developed computer codes to predict the performance of GaAs/Ge

cells. These models determine the cell characteristics as a function of optical cou-

pling into the cell and material parameters for each layer such as thickness of each

region, minority carrier diffusion length, diffusion coefficient, doping concentration

and recombination velocity.

Our model assumes that the top GaAs cell is electrically joined to a bottom Ge

cell by an N + GaAs/P + Ge tunnel junction. This junction may be formed by the

diffusion of Ga into the Ge and out-diffusion of Ge into the GaAs during growth. A

full description of this cell and the model is given elsewhere [refs. 7,8].

Our analysis performed to date shows that in order to achieve high efficiencies in

the dual junction configuration it is important that certain boundary conditions are

met. These are:

1. A low recombination velocity at the Ge back surface.

2. A low recombination velocity at the Ge emitter surface.

3. A thin Ge emitter.

4. Good optical coupling of infra red wavelengths into the Ge cell.
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5. Long diffusion length in the Ge bulk.

6. A highly reflecting back contact to the Ge cell.

Each of these boundary conditions results from the need to maximize the current

generation in the Ge cell since current matching between the GaAs and Ge cells is

required in order to achieve monolithic (i.e. two terminal) device performance. The

problem is further exacerbated by the weakly absorbing nature of Ge beyond 1.4

microns wavelength and the thinness of the substrate (typically 4 mils).

Effect of Ge Wafer Diffusion Length on Cell Performance

The importance of material quality on Ge cell performance is shown in Figure 2

where we have plotted the internal Q.E. as a function of Ge base diffusion length.

The calculated short circuit current generation in both the GaAs and Ge cells is also

shown in the figure. Current generation in the GaAs cell at wavelengths below 0.35

microns is assumed to be negligible since the cell will ultimately be covered by a filter

which is either absorbing below 0.35 microns wavelength (e.g. cerium oxide doped

borosilicate glass) or is coated with a UV rejecting filter. Other parameters used in

the calculation are shown in Table 1. The value for Ge emitter diffusion length was

obtained from data on experimental discrete Ge cells recently made at Spectrolab. A

base diffusion length of 80 microns was also measured on these cells. The GaAs cell

parameters are those known to give good agreement between experiment and theory

for high efficiency MOCVD and LPE homojunction cells. The window and emitter

thickness of 0.05 and 0.5 microns respectively are chosen to give the highest efficiency

and best radiation hardness and are well established. The thin window thickness of

500 ,_ also forms a fourth component of the multilayer a.r. coating described later.

In Table 2 we also show the computed effect of Ge base diffusion length on cell

efficiency. Other parameters used were again those shown in Table 1. Provided good

quality GaAs layers may be grown on the Ge substrate, the model conservatively

predicts an AM0 conversion efficiency of 20.29% for the GaAs cell with a short circuit

current density of 32.57 mA cm -2. In order to achieve equal current generation in the

Ge cell, good quality base material is obviously required. For a base diffusion length

of 100 microns the Ge short circuit current density is 31.57 mA cm -2 indicating that

current matching is indeed possible. The Ge cell efficiency is then 4.12% giving a

total GaAs/Ge cell efficiency of approximately 24.3%.

Back Surface Reflector/Back Surface Field

The use of a BSR and BSF is also important in maximizing current generation

in the Ge cell. In Figure 3 we show tile computed reflectance, (based on literature

values of the optical constants) from the interface between various metals and Ge. It

is clear that the reflectance for the Ge/Ti interface is only 17% whereas it is greater

than 95% for Al or Au making the use of the latter desirable as a back contacting
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material. In Figure 4 we also show the corresponding effect of these various back

contacting metals on the Ge cell internal Q.E. We note a substantial improvement in

QE at long wavelengths due to the use of A1 or Au as a BSR. The effect of a BSF in

the Ge cell is also shown. If an 80 micron Ge base diffusion length is assumed and

other parameters shown in Table 1 are used we calculate a Ge short circuit current

density of 31.04 mA cm -2 for an A1 BSR/BSF contact, 30.36 mA cm -2 for a Ti/BSF

contact and 29.35 mAcm -2 for the case of a Ti contact with no BSF. The use of an

A1 (or Au) BSR and BSF is therefore clearly desirable.

Experimental Performance Data

GaAs/Ge dual junction cells, 2 cm x 2 cm in size have been fabricated on 8 rail

thick polished Ge substrates. No attempt was made to improve the boundary condi-

tions such as incorporating a BSF or BSR, optimizing the Ge emitter or enhancing the

red performance of the AR coating. Measurements were made under an XT10 solar

simulator at 28°C. An average efficiency of 18.7% was measured. A full description

of the cells is given elsewhere [ref. 9].

In order to evaluate the performance of the GaAs and Ge cell components we

measured the temperature coefficient of efficiency of several cells. Typical data on a

19.1% (28°C) cell is shown in Figures 5 and 6. Our computer model predicts that the

Ge cell efficiency falls to zero at approximately 120°C due to the extremely high first

diode saturation current. Hence extrapolation of the high temperature portion of the

curve predicts a 28°C GaAs AM0 cell efficiency of 16.6% and a Ge AM0 cell efficiency

of 2.5%. Improvements to GaAs cell efficiency will be made by improvements to GaAs

MOCVD growth quality while the Ge cell may be improved by the use of a BSF/BSR

and by better IR optical coupling as mentioned earlier.

In Figure 6 we also show the temperature coefficient of open circuit voltage of the

same cell. At lower temperatures the temperature coefficient is equal to -3.94 mV/°C

due to the series connection of both GaAs and Ge cells. At higher temperatures the

coefficient of -2.33 mV/°C approaches that of GaAs for reasons previously mentioned.

Both temperature coefficients of voltage and power are in broad agreement with our

model.

Improved A.R. Coating Design

Most GaAs/Ge cells reported to date have utilized a dual antireflection coating

of TiO2/A1203 optimized for GaAs homojunction cells. In Figure 7 we show the

measured reflectance from such a cell. A passive thermal absorptance of 0.88 was

measured. This is high compared to GaAs alone due to the absorbing nature of the

Ge substrata out to 1.85 microns. It is also evident that the DAR coating does not

provide a good bandpass filter at long wavelengths for high Ge cell performance in a

dual junction configuration.
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In contrast we also show in Figure 7 the effect of a third layer of MgF2 in the

optical stack to form a triple layer AR (TAR) coating. There is a significant reduction

in red reflectance beyond 0.87 microns wavelength, thus allowing more light to reach

the Ge cell.

In order to evaluate the efficacy of this third coating on cell performance under

"true" AM0 illumination, two GaAs/Ge cells were flown on the NASA LeRC Lear

jet. This technique has proven to be extremely valuable in providing rapid access to

"true" AM0 measurements and has shown good correlation with high altitude balloon

and shuttle flight data.

In Figures 8 and 9 we show data on a DAR and TAR coated cell as measured

on the Lear jet flight at approximately AM0.22. Since it was the purpose to make

relative measurements between AR coatings rather than obtain absolute data, no

corrections for ozone, Earth-Sun distance or air mass were made. The kink seen

on the DAR coated cell is caused by current starvation in the Ge cell causing it.

to become reverse biased as the GaAs/Oe cell approaches short circuit conditions.

Similar effects have been observed by others [ref. 7]. In contrast the cell with the TAR

has a substantially improved fill factor due to increased Ge cell current generation

although further improvements to achieve current matching are obviously needed.

We have continued to identify superior a.r. coatings to ensure that the increase in

Ge cell performance still persists after glassing, since MgF2 becomes ineffective when

an adhesive of refractive index n=1.43 is applied.

In Figure 10 we show the computed normal reflectance from the filtered optical

stack comprising the 0.05 /_m A1GaAs window plus an additional proprietary three

layer a.r. coating. An adhesive of n=1.43 was assumed to cover the cell. The

tolerance on the thicknesses of the individual layers of this stack is high making it a

viable production coating. In addition all of the materials are space qualified. This

a.r. coating will shortly be used on experimental GaAs/Ge cells and should minimize

reflection losses from GaAs in the IR region.

Conclusions

Large area GaAs/Ge cells offer substantial promise for increasing the power out-

put from existing silicon solar array designs and for providing an enabling technology

for missions hitherto impossible using silicon. Single junction GaAs/Ge cells offer

substantial advantages in both size, weight, and cost compared to GaAs cells but the

efficiency is limited to approximately 19.5%-20% AM0. The thermal absorptance of

GaAs/Ge cells is also worse than GaAs/GaAs cells (0.88 vs 0.81 typ.) due to the

absorption in the Ge substrate.

On the other hand dual junction GaAs/Ge cells offer efficiencies tap to ultimately

24% AM0 in sizes up to 8 cmx 8 cm but there are still technological issues remaining
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to achievecurrent matching in the GaAs and Ge cells. This can be achieved through

tuned AR coatings, improved quality of the GaAs growth, improved quality Ge wafers

and the use of a BSF/BSR in the Ge cell.

Although the temperature coefficients of efficiency and voltage are higher for

dual junction GaAs/Ge cells it has been shown elsewhere [ref. 9] that for typical

28°C cell efficiencies of 22% (dual junction) vs 18.5% (single junction) there is a

positive power trade-off up to temperatures as high as 120°C. Due to the potential

ease of fabrication of GaAs/Ge dual junction cells there is likely to be only a small

cost differential compared to single junction cells.
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Figure 6 EXPERIMENTALLY MEASURED TEMPERATURE COEFFICIENT OF

OPEN CIRCUIT VOLTAGE OF DUAL JUNCTION GaAs/Ge CELL

37



REFLECTANCE %
100

9O

8O

70

60

5O

GaAE RESPONSE Ge RESPONSE

: b

4O

10 F2

0 t I T F I 1 I * f = _ '

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

WAVELENGTH MICRONS

Figure 7 EXPERIMENTLALY MEASURED REFLECTANCE FROM DUAL

JUNCTION CELLS WITH TiO2/AI203 AND TiO2/AI203/MgF 2
A.R. COATING

CURRENT (mA)
140

120

100

80

60

40

20

0

-20

-0.2

CE'LL SIZE= 2¢m X 2cm I
o,R,'r,%/,.=o,
FF'O,40E

DATANORMALIZED TO 211DEa c
I I I | , t

o 0.2 0.4 0.6 o.a

VOLTAGE (mV)

i =1
1 1.2

Figure 8 MEASURED AM0.22 I-V CURVE OF GaAs/Ge CELL WITH

TiO2/AI203 DUAL A.R. COATING. (COURTESY OF NASA LeRC)

38



CURRENT (mA)
140

120

100

80

60

40

20

0

-20
-0.2

CELL 81ZE= 2cm X 2Cm

"FAR; T IOI/A I 'tO4/M gF I I "_

IB

• II
I

DATA NOIRMALIZEO TO 28 OEG C
• i i I I I L -

0 0.2 0.4 O.a O.S 1 1.2

VOLTAGE (mV)

Figure 9 MEASURED AM0.22 I-V CURVE OF GaAs/Ge CELL WITH

TiO2/AI203/MgF 2 TRIPLE LAYER A.R. COATING
(COURTESY OF NASA LeRC)

REFLECTANCE
1.00

0.90

0.80 _-

0.70 F

• F

0.30 I

0"10 F\ /V
0 O0 " _ " .... a, ......... :

0.25 0.50 0.75 1.00

ADHESIVE (N'1,43)

ARt

AR2

AR3

WINDOW (S00A

GaAI

GI

1.50 1.75 2.00

WAVELENGTH MICRONS

Figure i0 CALCULATED REFLECTANCE OF FILTERED OPTIMIZED

GaAs/Ge CELL WITH TRIPLE LAYER A.R. COATING

39



GaAs CELL PARAMETERS

WINDOW THICKNESS uM

WINDOW DIFF LENGTH uM

WINDOW DIFF COEFFT cm2/S

WINDOW SURFACE REC VELOCITY cm/S
WINDOW DOPING CM-3

0.05

0.2

0.27

i000000

1.0E+I8

EMITTER THICKNESS uM 0.5

EMITTER DIFF LENGTH uM 5

EMITTER DIFF COEFFT cm2/S 90

EMITTER INTERFACE REC VELOCITY cm/S i0000
EMITTER DOPING CM-3 2.0E+18

BASE WIDTH uM

BASE DIFF LENGTH uM

BASE DIFF COEFFT cm2/S

BACK SURFACE REC VELY cm/S
BASE DOPING CM-3

SERIES RESISTANCE OHMS

SHUNT RESISTANCE OHMS

GRID OBSCURATION %

TEMP DEG C

NO OF SUNS CONC

Ge CELL PARAMETERS

3

2

5

i00

2.0E+I7

0.2

i0000

5

28

1

EMITTER THICKNESS uM

EMITTER DIFF LENGTH uM

EMITTER DIFF COEFFT cm2/S

EMITTER SURFACE REC VELOCITY cm/S
EMITTER DOPING CM-3

BASE WIDTH uM

BASE DIFF LENGTH uM

BASE DIFF COEFFT cm2/S

BACK SURFACE REC VELY cm/S
BASE DOPING CM-3

SERIES RESISTANCE OHMS

SHUNT RESISTANCE OHMS

0.2

1

24

i0000

I.OE+I9

i00

8O

15

i00

5.0E+17

0.2

i0000

Table 1 GaAs AND Ge CELL PARAMETERS USED IN CALCULATIONS
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GaAs CELL Ge CELL
L=I00_ L=75_ L=50_ L=25_

Voc (V) -2 1.023 0.269 0.264 0.255 0.237 0.179
Jsc (mAcm ) 32.57 31.57 30.87 29.7 27.68 22.9
FF 0.821 0.655 0.646 0.630 0.597 0.500
Pmax (mWcm-2) 27.37 5.57 5.27 4.78 3.93 2.05

Effy (%) 20.23 4.12 3.89 3.53 2.90 1.52

Table 2 EFFICIENCY PREDICTIONS FOR GaAs/Ge CELL WITH
Ge BASE DIFFUSION LENGTHAS A VARIABLE
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